

## **Working with Quadratics**

| Working with Quadratics          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Aim                              | Quadratic equations are often treated as abstract algebraic entities instead of<br>expressions of area. By showing students this concrete aspect, we support<br>students in developing their understanding rather than merely applying rules.<br>By encouraging students to use sketches to demonstrate their working, it is less<br>likely that they will miss terms when expanding brackets.<br>Responses could be demonstrated by using an enlarged set of tiles. Please note<br>that tiles should be printed on white paper or card so that only one side is<br>coloured.<br><i>This video uses materials and ideas from the FMSP's E&amp;E PD programme.</i>                                                                                                                                                                                                                                                                                                                                                                                           |
| Activity: filling rectangles     | Students are given the tiles and asked to give the areas of the three different sized tiles. They are then challenged to make up a rectangles of dimensions $(x + 2)$ and $(x + 1)$ . Different responses are considered but students are shown that all correct solutions contain one $x^2$ , $3x$ and 2 unit tiles.<br>Students can practise this with different dimensions of the form $(x + a)$ until they feel confident.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Activity: creating<br>rectangles | Students are given the total area $(x^2 + 4x + 3)$ and asked to create a rectangle using<br>all of the pieces. Different responses are possible, but all rectangles will have the<br>dimensions $(x + 3)$ by $(x + 1)$ .<br>Students should be encouraged to record their answers using sketches (which<br>reinforces the 'grid method' for multiplication and could develop into expanding<br>and factorising polynomials at A level)<br>Students should practise this with positive terms until they feel confident.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Activity: using 'negatives'      | So far students have been working with dimensions in the form $(x + a)$ and the extension into the form $(x - a)$ is not trivial.<br>If placing a tile of area $x$ next to a tile of area $x_2$ shows a rectangle with dimensions $x(x + 1)$ then by turning over the tile of area $x$ and placing it over one end of the $x_2$ tile, we create a rectangle of area $x(x - 1)$ and when separating out the tiles we have $x^2 - x$ .<br>If we want a rectangle of dimensions $(x - 1)$ and $(x - 2)$ then we overlay three $x$ tiles onto the $x_2$ tile, but this gives an overlap of 2 units where we have the 'positive' blue from the $x_2$ tile and a double overlap of the 'negative' white from the $-x$ tile; to get to 'zero' we need to add on two blue unit tiles so that when we separate out the tiles to give the area we have $x^2 - 3x + 2$<br>Students can practise this until they feel confident and should be encouraged to record answers using sketches.<br>Students could investigate expressions for the difference of two squares. |
| The resources used in the vi     | deo follow.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |



## **Quadratic Rectangles: shapes to cut out**





Thanks to Francis Bove for the improved, larger versions of the shapes.