🜔 amsp[®]

Exponentials & logarithms (AS)

- F1 Know and use the function a^x and its graph, where *a* is positive. Know and use the function e^x and its graph.
- F2 Know that the gradient of e^{kx} is equal to ke^{kx} and hence understand why the exponential model is suitable in many applications.
- F3 Know and use the definition of $\log_a x$ as the inverse of a^x , where *a* is positive and $x \ge 0$. Know and use the function $\ln(x)$ and its graph. Know and use $\ln(x)$ as the inverse function of e^x .
- F4 Understand and use the laws of logarithms: $\log_a x + \log_a y = \log_a(xy)$; $\log_a x \log_a y = \log_a \left(\frac{x}{y}\right)$; $k \log_a x = \log_a x^k$ (including, for example, k = -1 and $k = -\frac{1}{2}$).

Co Geo

Trig

Polyn

- F5 Solve equations of the form $a^x = b$.
- F6 Use logarithmic graphs to estimate parameters in relationships of the form $y = ax^n$ and $y = kb^x$, given data for x and y.
- F7 Understand and use exponential growth and decay; use in modelling (examples may include the use of e in continuous compound interest, radioactive decay, drug concentration decay, exponential growth as a model for population growth); consideration of limitations and refinements of exponential models.

For a brief commentary on this content go to the MEI outline SoW.

Pre-requisites

- AS Surds and Indices: The laws of indices lead directly to the laws of logarithms.
- AS Differentiation: Appreciate the gradient function of $y = e^{kx}$.
- AS Graphs and transformations: Appreciate the link between $y = e^x$ and $y = e^{kx}$.

Teaching it!

- A series of seven <u>videos</u> designed to support students on this topic.
- Two interesting Desmos Classroom activities exploring exponential growth: <u>Circles</u>, <u>Avi & Benita</u>

Surds

Quads

Eqns

- <u>Card sort: Exponentials</u>: A Desmos Classroom activity matching graphs and equations.
- <u>Logarithm lattice</u>: An Underground Mathematics activity looking at values of logarithms.

AS Pure: Prob solv

- Graph of $y = ka^x$ (student task): <u>Autograph</u>, <u>Desmos</u>, <u>GeoGebra</u>
- Derivative of $y = e^{kx}$ (student task): <u>Autograph, Casio, Desmos, GeoGeb</u>ra
- Reduction to linear form (student task): <u>Casio</u>

Common student errors

- Incorrectly stating the laws of logarithms; for example, $\log_{10} a \log_{10} b = \frac{\log_{10} a}{\log_{10} b}$.
- Solving equations with products where logarithms need to be taken,
- e.g. $P = aT^n \Rightarrow \log P = \log a \times n \log T$ instead of $\log P = \log a + n \log T$.
- After reducing to linear form, difficulty with linking gradients and *y*-intercepts from their straight line to the original equation.

Getting them thinking

Graphs > Binomial >

- Is takings logs a useful technique for solving the equation $3^x = x^3$?
- Explain how you could use the fact that $2^{10} \approx 1000$ and $3^3 \approx 5^2$ to find approximate values of $\log_{10} 2$, $\log_{10} 5$ and $\log_{10} 3$.

Vectors

E & logs

Int

Starting from the laws of indices, prove the laws of logarithms.

Diff

Versio