

Integration (AS)

- H1 Know and use the Fundamental Theorem of Calculus.
- H2 Integrate x^n (excluding n = -1), and related sums, differences and constant multiples.
- H3 Evaluate definite integrals; use a definite integral to find the area under a curve.

For a brief commentary on this content go to the MEI outline SoW.

Pre-requisites

- GCSE: Rules of indices.
- AS Differentiation: Ensure fluency.

Teaching it!

- A series of five <u>videos</u> designed to support students on this topic.
- <u>Calculus card match</u>: Using index and surd form in differentiation and integration (<u>Solution</u>).
- <u>Definite integral sliders</u>: A GeoGebra file designed to get students thinking.
- Meaningful areas: An integration based investigation from Underground Mathematics.
- Area under a curve (student task): <u>Autograph, Casio, Desmos, GeoGebra</u>

Common student errors

- Mixing up the rules for differentiation and integration.
- Omitting the constant of integration.
- Incorrect use of negative indices when rewriting expressions, e.g. writing $\frac{1}{2x}$ as $2x^{-1}$ rather than $\frac{1}{2}x^{-1}$.
- Incorrect integration of constants.

Getting them thinking

- Is it ever false that $\frac{d}{dx}(\int y dx) = y$?
- Give me an example of a curve for which $\int_{-2}^{0} y \ dx = -\int_{0}^{2} y \ dx$.
- $\int_0^2 1 x \, dx = 0$. Make up a similar example. (<u>GeoGebra</u> file to illustrate.)
- Prove the Fundamental Theorem of Calculus.
- Prove that $\int_0^a x^n dx = -\int_{-a}^0 x^n dx$.

Managed by MET Mathematics Education Innovation

AS Pure: Prob solv Surds Quads Eqns Co Geo Trig Polyn Graphs Binomial Diff Int Vectors E & logs