Slide		Teacher notes:
1		With each slide are some extra details and where appropriate
		answers to save time!
		Slides 2 to 4 are the main focus for the enrichment.
	Advanced Mathematics	
	Support Programme®	After this the direction to other activities is at the discretion of
		the teacher.
		For instance, slides 8 and 9 might be the next directed steps.
		Or slide 5. 'further thoughts' followed by slides 8 and 9.
		Or slides 5. 6 and 7.
		Or let students choose which activity interests them.
Slide	Oamsp.	The Collatz Conjecture is based on this sequence:
2	The Collatz Conjecture	If the number is even divide by 2 to find the next term if the
	Recently	number is odd then multiply the term by 3 and add 1 to find the
	• What's it all about?	next term i.e. $3n + 1$
	Let's start here with	The conjecture is that no matter what value of n the sequence
	Alex Belos and Numberphile	will always reach 1
	New States	The fact that no one has disproved this yet makes it an interesting
	al lower bit 1978	area for mathematics recoarch
		ated for mathematics research:
Slido	kranter internet	A similar problem to the Colleta and from NDICU and UKNT but
31100		A similar problem to the conatz one, from NRICH and ORIVIT, but
5	Collatz-ish	based on $5n - 1$ for odd terms.
	Collatz-ish	Here are solutions to the question: 6, 3, 14, 7, 34, 17, 84, 42, 21,
	Age 14 to 16 Shert ** The for term of a converse of nonline integers is 6. The other terms in the serverse	104, 52, 26, 13 , 64, 32, 16 , 8, 4, 2, 1, 4, 2, 1,
	follow these rules: If a term is even then divide it by 2 to obtain the next term; if a term is odd then multiply it by 5 and subtract 1 to obtain the next term.	i.e. 13 and 16. So a closed question where the quickest way to
	For which values of n is the nth term equal to n?	find the solution is to generate the sequence.
	AF (mars 14 1919)	
Slide	Qamsp.	Answer missing from slides so that it isn't accidentally seen when
4	Finished?	moving through the pages.
	Check out your answer here	Link to the NRICH website so that students can check their answer
		but also see links to other problems/puzzles.
Slide	Curther thoughto	Further thoughts – an initial extension to the original task if
Э	Further moughts	required.
	 Can you find any other starting numbers where there are values of n for which the nth term is 	It would be useful to suggest a time limit if working independently
	equal to n? (Hint: try numbers from 2 to 15)	e.g. 20 minutes. A possibility for feedback is to ask students to
	 As with the Collatz conjecture will this, 5n -1, always end with 4, 2, 1 for any starting number? 	write a short summary of whether they found the video
		interesting, their answers and anything else they discovered.
	n max-2013	For starting numbers from 2 to 15 these are the solutions:
		Start 4, terms are 2 and 4.
		Start 5 , term is 7.
		Start 12 , term is 3.
		The following start numbers do not end with 4, 2, 1,
		9, 11, 15, 18, 19 for starting numbers from 1 to 20.

Slide 6	What happens if you still divide even numbers by 2 to obtain the next term but change the multiplier for odd terms to -3 and subtract 1 to obtain the next term i.e3n - 1 ? (Hint: try start numbers <10) Why do you think this is what happens? What is the first start number where this doesn't happen?	 More thoughts – a variation where negative numbers are involved in the sequence. Again, if required, and would benefit from a maximum time limit. A more open-ended question which would benefit from a teacher suggested time frame. This sequence finishes with this repeating pattern: -4, -2, -1, 2, 1, -4, -2, -1, 2, 1, for these starting numbers: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 20 First number where this doesn't happen is 15 followed by 17 and 19.
Slide 7	Conjecture Does it still work for negative start numbers?	For students who have attempted 'more thoughts' an extra question.
Slide 8	Construction of the series of	Other possibilities for further activity as an alternative to some of the 'thoughts'. If working independently students could take a photo of their finished drawing/diagram and submit this to the teacher. Seaweed picture was downloaded from: https://static1.squarespace.com/static/548b5b70e4b0b57ba1829 07d/t/58da8df81b10e35ee212221a/1490718217324/seaweed_fil e.jpg See Brady Haran's Blog: https://www.bradyharanblog.com/blog/the-collatz-conjecture-in- colour for more information and ideas. With thanks to Edmund Hariss for permission to use the image from his books: Visions of Numberland https://www.bloomsbury.com/uk/visions-of-numberland- 9781408888988/ and Visions of the Universe https://theexperimentpublishing.com/catalogs/fall-2016/visions-of- the-universe/
Slide 9	Vant to know a bit more about the Collatz Conjecture? Professor David Eisenbud on the infamous <u>Collatz Conjecture</u> , a simple problem that mathematicians may not be "ready" to crack. Wikipedia – Collatz Conjecture Wikipedia – Collatz Conjecture Yhe On-Line Encyclopedia of Integer Sequences® (OEIS®) as referenced by Professor David Eisenbud, list of starting values and number of steps here.	Another really interesting video from Numberphile with Professor David Eisenbud on the Collatz Conjecture – worth watching. Links for students if they are interested in finding out more.
Slide 10	Contact the AMSP J 01225 716 492 @ admin @amsp.org.uk ▶ amsp.org.uk ▶ Advanced_Maths	Stay informed about the AMSP and receive updates: https://amsp.org.uk/subscribe

This image is a sample from the colouring book Visions of the Universe by Alex Bellos and Edmund Harriss Shared with their permission

You can download this file:

https://static1.squarespace.com/static/548b5b70e4b0b57ba182907d/t/58da8df81b10e35ee212221a/14907182173 24/seaweed_file.jpg

Y10SE CM Apr 2020